Corrections to "On certain homeomorphism groups"

Parameswaran Sankaran ${ }^{\text {a,* }}$, K. Varadarajan ${ }^{\text {b }}$
${ }^{2}$ School of Mathematics, SPIC Science Foundation, 92, G.N. Chetty Road, Madras 6000I7, India
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N.W., Calgary,
Alta. Canada T2N $1 N 4$

Communicated by A. Blass; received 15 September 1995

Recently, we noted that the inductive step in the proof of Lemma 4 [1] was incomplete in the case $G=G_{0}\left(\mathbb{R}^{n}\right), n \geq 1$. Here we give a different proof of that lemma for $G_{0}\left(\mathbb{R}^{n}\right), n>1$. For $n=1$, we are able to obtain only a slightly weaker form of the lemma. However, this weaker form is all that is needed in the proof of Theorem 5 [1] and so the results of our paper remain valid. We shall preserve the notations of our paper. Thus $G_{0}\left(\mathbb{R}^{n}\right)$ denotes the group of all homeomorphisms of \mathbb{R}^{n} with compact supports.

Let $n \geq 2$. The group $G=G_{0}\left(\mathbb{R}^{n}\right)$ has the following property: given any sequence of pairwise distinct points $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, k$ any positive integer, there exists a $g \in G$ such that $g\left(x_{i}\right)=y_{i}$, for $1 \leq i \leq k$. This property fails for $G_{0}(\mathbb{R})$. However, if $x_{1}<y_{1} \cdots<x_{k}<y_{k}$ in \mathbb{R}, then there exists a $g \in G_{0}(\mathbb{R})$ such that $g\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$. In fact, one could find a $g \in G_{0}(\mathbb{R})$ such that g is piecewise linear in \mathbb{R} having support in any prescribed interval (x, y), where $x<x_{1}<y_{k}<y$.

For $n \geq 1$, let \mathscr{B}_{n} denote the collection of all open sets in \mathbb{R}^{n} of the form $J_{1} \times \cdots \times J_{n}$ where each J_{i} is a nonempty bounded interval in \mathbb{R} with rational end points. For $U, V \in \mathscr{B}_{1}$ we write $U<V$ to mean $\bar{U} \cap \bar{V}=\emptyset$, and $x<y$ if $x \in U$ and $y \in V$.

Lemma 1. Let $n \geq 1, k \geq 1$. Let $U_{1}, V_{1}, \ldots, U_{k}, V_{k} \in \mathscr{B}_{n}$ be such that $\bar{U}_{i} \cap \bar{U}_{j}=$ $\bar{U}_{i} \cap \bar{V}_{p}=\bar{V}_{i} \cap \bar{V}_{j}=\emptyset$ for $1 \leq i, j, p \leq k, i \neq j \neq p$. When $n=1$, assume also that $U_{1}<V_{1}<\cdots<U_{k}<V_{k}$. Then, given any sequence of nonzero integers n_{1}, \ldots, n_{k}, there exists a $g \in G_{0}\left(\mathbb{R}^{n}\right)$ such that $g^{n_{i}}\left(U_{i}\right) \subset V_{i}$ for $1 \leq i \leq k$.

Proof. This is easy for $k=1$. In fact, one can find an element g_{i} in $G_{0}\left(\mathbb{R}^{n}\right)$ with support contained in an open set $W_{i}, 1 \leq i \leq k$ such that $g_{i}^{n_{i}}\left(U_{i}\right) \subset V_{i}$ and $\bar{W}_{i} \cap \bar{W}_{j}=\emptyset$, for $i \neq j$. Then it is straightforward to verify that $g=g_{1}, \ldots, g_{k} \in G_{0}\left(\mathbb{R}^{n}\right)$, and $g^{n_{i}}\left(U_{i}\right) \subset V_{i}$, $1 \leq i \leq k$.

[^0]For each $k \geq 1$, and each sequence of open sets $U_{1}, V_{1}, \ldots, U_{k}, V_{k} \in G_{0}\left(\mathbb{R}^{n}\right)$, satisfying the hypothesis of Lemma 1, and each sequence of nonzero integers n_{1}, \ldots, n_{k}, choose a $g \in G_{0}\left(\mathbb{R}^{n}\right)$ such that $g^{n_{i}}\left(U_{i}\right) \subset V_{i}, 1 \leq i \leq k$, and fix it. Let E_{n} denote the subset of $G_{0}\left(\mathbb{R}^{n}\right)$ of such chosen g. Note that the set E_{n} is countable.

The following is a restatement of Lemma 4 of [1] for $n>1$.
Lemma 2. Let $n \geq 1$. Let $h_{1}, \ldots, h_{k} \in G_{0}\left(\mathbb{R}^{n}\right) \backslash\{1\}$, and let n_{1}, \ldots, n_{k} be a sequence of non- zero integers. When $n=1$, assume further that there exists $x_{i} \in \mathbb{R}$ such that $x_{1}<$ $y_{1}<\cdots<x_{k}<y_{k}$, where $h_{i}\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$. Then there exists a $g \in G_{0}\left(\mathbb{R}^{n}\right)$ such that

$$
h_{k} g^{n_{k}} \cdots h_{1} g^{n_{1}} \neq 1
$$

Proof. First, choose points $u_{i} \in \mathbb{R}^{n}, 1 \leq i \leq k$ such that $h_{i}\left(u_{i}\right)=v_{i} \neq u_{i}$, with $u_{1}, v_{1}, \ldots, u_{k}, v_{k}$ being pairwise distinct. In case $n=1$, choose $u_{i}=x_{i}, v_{i}=y_{i}$, where x_{i}, y_{i} are as in the statement of the lemma. Then one can find neighbourhoods $U_{1}, V_{1}, \ldots, U_{k}, V_{k} \in \mathscr{B}_{n}, v_{i} \in V_{i}, u_{i} \in U_{i}$ such that $\bar{U}_{i} \cap \bar{U}_{j}=\bar{V}_{i} \cap \bar{V}_{j}=\bar{U}_{i} \cap \bar{V}_{p}=\emptyset$ for $1 \leq i, j, p \leq k, i \neq j \neq p$. In case $n=1$ we may assume that $U_{1}<V_{1}<\cdots<U_{k}<V_{k}$.

Now, choose a $V_{0} \in \mathscr{B}_{n}$ whose closure is disjoint from $\bigcup_{1 \leq i \leq k}\left(\bar{U}_{i} \cup \bar{V}_{i}\right)$. When $n=1$, we can arrange so that $V_{0}<U_{1}$. Now applying Lemma 1 we see that there exists a g in E_{n} such that $g^{n_{i}}\left(V_{i-1}\right) \subset U_{i}, 1 \leq i \leq k$. A routine verification now shows that $h_{k} g^{n_{k}} \cdots h_{1} g^{n_{1}}$ maps V_{0} into V_{k}. It follows that $h_{k} g^{n_{k}} \cdots h_{1} g^{n_{1}} \neq 1$.

When $n=1$, the hypothesis of the above lemma does not hold for an arbitrary finite sequence of elements $G_{0}(\mathbb{R})$. Therefore, the above lemma does not imply Lemma 4 of [1]. However, we show below that one can find a copy H of $G_{0}(\mathbb{R})$ in $G_{0}(\mathbb{R})$ so that the hypothesis of the above lemma does hold for any finite sequence of elements of H.

Let $J_{1}<K_{1}<\cdots<J_{m}<K_{m}<\cdots$ be a sequence of intervals in $\mathbb{R}, J_{m}, K_{m} \in \mathscr{B}_{1}$ such that no two of them have a common end point, and $\lim J_{m}=p=\lim K_{m}$ for some $p \in \mathbb{R}$ (that is $\lim a_{m}=p=\lim b_{m}=p$ for any $a_{m} \in J_{m}, b_{m} \in K_{m}$). Choose order preserving homeomorphisms $\phi_{m}: J_{m} \rightarrow \mathbb{R}$ and order reversing homeomorphisms $\theta_{m}: K_{m} \rightarrow \mathbb{R}$ for each $m \geq 1$.

Let $m \geq 1$. Given any $h \in G_{0}(\mathbb{R})$, let $\psi_{m}(h): \mathbb{R} \rightarrow \mathbb{R}$ be the map

$$
\psi_{m}(h)(x)= \begin{cases}\phi_{m}^{-1} h \phi_{m}(x) & \text { if } x \in J_{m} \\ \theta_{m}^{-1} h \theta_{m}(x) & \text { if } x \in K_{m} \\ x & \text { if } x \notin\left(J_{m} \cup K_{m}\right) .\end{cases}
$$

It is straightforward to verify that each $\psi_{m}: G_{0}(\mathbb{R}) \rightarrow G_{0}(\mathbb{R})$ is a monomorphism of groups, and that for any $h \neq 1$, in $G_{0}(\mathbb{R})$, there exists an $x \in J_{m} \cup K_{m}$ such that $\psi_{m}(h)(x)>x$.

Finally let $\psi: G_{0}(\mathbb{R}) \rightarrow G_{0}(\mathbb{R})$ be defined as $\psi(h)=\prod_{m \geq 1} \psi_{m}(h)$. More precisely,

$$
\psi(h)(x)= \begin{cases}\psi_{m}(h)(x) & \text { if } x \in J_{m} \cup K_{m}, \\ x & \text { if } x \notin \cup_{m \geq 1}\left(J_{m} \cup K_{m}\right) .\end{cases}
$$

Then the map ψ is a well-defined monomorphism of groups. Given any sequence $h_{1}, \ldots, h_{k} \in G_{0}(\mathbb{R}) \backslash\{1\}$, we choose $x_{j} \in J_{j} \cup K_{j}, 1 \leq j \leq j \leq k$ such that $y_{j}:=\psi\left(h_{j}\right)\left(x_{j}\right)=$ $\psi_{j}\left(h_{j}\right)\left(x_{j}\right)>x_{j}, 1 \leq j \leq k$. Then we have $x_{1}<y_{1}<\cdots<x_{k}<y_{k}$. This proves the following assertion.

Lemma 3. There exists a monomorphism of groups

$$
\psi: G_{0}(\mathbb{R}) \rightarrow G_{0}(\mathbb{R})
$$

such that for any $h_{1}, \ldots, h_{k} \in G_{0}(\mathbb{R}) \backslash\{1\}$, the sequence of elements $\psi\left(h_{1}\right), \ldots, \psi\left(h_{k}\right)$ satisfies the hypothesis of Lemma 1. In particular, given any sequence of nonzero integers n_{1}, \ldots, n_{k}, there exists a $g \in E_{1}$ such that

$$
\psi\left(h_{k}\right) g^{n_{k}} \cdots \psi\left(h_{1}\right) g^{n_{1}} \neq 1
$$

As observed earlier, Lemma 4 of [1] for the case $G_{0}\left(\mathbb{R}^{n}\right), n \geq 2$, follows from Lemma 1, and in fact, replacing E by $E_{n}, n \geq 2$, we see that we can avoid the use of Schreier-Ulam metric on $G_{0}\left(\mathbb{R}^{n}\right)$. In case of $G=G_{0}(\mathbb{R})$, we need only replace the diagonal copy \mathscr{G} of G in G^{ω} in the proof of Theorem 5 [1] by the image of G under the composite

$$
G \xrightarrow{\psi} G \xrightarrow{\Delta} G^{\omega} .
$$

Here again one can take E to be E_{1}. Then the rest of the proof of Theorem 5 [1] goes through for this copy of G, showing $G * \mathbb{Z} \simeq \Delta^{\circ} \psi(G) * \mathbb{Z}$ embeds in G.

Addendum: We wish to add the following corollary to Theorem 5 [1].
Theorem 4. Let G denote any one of the following groups: $G_{0}\left(\mathbb{R}^{n}\right), n \geq 1$; the group of all homeomorphisms of X, where $X=\mathbb{Q}, \mathbb{N}$, the space of irrational numbers, the Cantor set; or the group of all order preserving homeomorphisms of the reals. Let $G_{\lambda}=G$ for $\lambda \in \mathbb{R}$. Then the free product $*_{\lambda \in \mathbb{R}} G_{\lambda}$ embeds in G.

Proof. Let $\left\{t_{\lambda}\right\}_{\lambda \in \mathbb{R}}$, denote a set of free generators of a free group F of rank the continuum. By Theorem 5 [1], we know that $G * F$ embeds in G. Now each subgroup $t_{\lambda}^{-1} G t_{\lambda}$ of $G * F$ is isomorphic to G, and they generate their free product in $G * F$ as λ varies in \mathbb{R}. As $G * F$ embeds in G, this proves the theorem.

References

[1] P. Sankaran and K. Varadarajan, On certain homeomorphism groups, J. Pure Appl. Math. 92 (1994) 191-197.

[^0]: *Corresponding author. E-mail: sankaran@ssf.ernet.in.

