

Journal of Pure and Applied Algebra 114 (1997) 217-219

Corrections to "On certain homeomorphism groups"

Parameswaran Sankaran^{a,*}, K. Varadarajan^b

^a School of Mathematics, SPIC Science Foundation, 92, G.N. Chetty Road, Madras 600017, India ^b Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N.W., Calgary, Alta. Canada T2N 1N4

Communicated by A. Blass; received 15 September 1995

Recently, we noted that the inductive step in the proof of Lemma 4 [1] was incomplete in the case $G = G_0(\mathbb{R}^n)$, $n \ge 1$. Here we give a different proof of that lemma for $G_0(\mathbb{R}^n)$, n > 1. For n = 1, we are able to obtain only a slightly weaker form of the lemma. However, this weaker form is all that is needed in the proof of Theorem 5 [1] and so the results of our paper remain valid. We shall preserve the notations of our paper. Thus $G_0(\mathbb{R}^n)$ denotes the group of all homeomorphisms of \mathbb{R}^n with compact supports.

Let $n \ge 2$. The group $G = G_0(\mathbb{R}^n)$ has the following property: given any sequence of pairwise distinct points $x_1, \ldots, x_k, y_1, \ldots, y_k$, k any positive integer, there exists a $g \in G$ such that $g(x_i) = y_i$, for $1 \le i \le k$. This property fails for $G_0(\mathbb{R})$. However, if $x_1 < y_1 \cdots < x_k < y_k$ in \mathbb{R} , then there exists a $g \in G_0(\mathbb{R})$ such that $g(x_i) = y_i$, $1 \le i \le k$. In fact, one could find a $g \in G_0(\mathbb{R})$ such that g is piecewise linear in \mathbb{R} having support in any prescribed interval (x, y), where $x < x_1 < y_k < y$.

For $n \ge 1$, let \mathscr{B}_n denote the collection of all open sets in \mathbb{R}^n of the form $J_1 \times \cdots \times J_n$ where each J_i is a nonempty bounded interval in \mathbb{R} with rational end points. For $U, V \in \mathscr{B}_1$ we write U < V to mean $\overline{U} \cap \overline{V} = \emptyset$, and x < y if $x \in U$ and $y \in V$.

Lemma 1. Let $n \ge 1$, $k \ge 1$. Let $U_1, V_1, \ldots, U_k, V_k \in \mathscr{B}_n$ be such that $\overline{U}_i \cap \overline{U}_j = \overline{U}_i \cap \overline{V}_j = \emptyset$ for $1 \le i$, j, $p \le k$, $i \ne j \ne p$. When n = 1, assume also that $U_1 < V_1 < \cdots < U_k < V_k$. Then, given any sequence of nonzero integers n_1, \ldots, n_k , there exists a $g \in G_0(\mathbb{R}^n)$ such that $g^{n_i}(U_i) \subset V_i$ for $1 \le i \le k$.

Proof. This is easy for k = 1. In fact, one can find an element g_i in $G_0(\mathbb{R}^n)$ with support contained in an open set W_i , $1 \le i \le k$ such that $g_i^{n_i}(U_i) \subset V_i$ and $\overline{W}_i \cap \overline{W}_j = \emptyset$, for $i \ne j$. Then it is straightforward to verify that $g = g_1, \ldots, g_k \in G_0(\mathbb{R}^n)$, and $g^{n_i}(U_i) \subset V_i$, $1 \le i \le k$. \Box

^{*}Corresponding author. E-mail: sankaran@ssf.ernet.in.

^{0022-4049/97/\$17.00} Copyright () 1997 Elsevier Science B.V. All rights reserved PII \$0022-4049(96)00135-1

For each $k \ge 1$, and each sequence of open sets $U_1, V_1, \ldots, U_k, V_k \in G_0(\mathbb{R}^n)$, satisfying the hypothesis of Lemma 1, and each sequence of nonzero integers n_1, \ldots, n_k , choose a $g \in G_0(\mathbb{R}^n)$ such that $g^{n_i}(U_i) \subset V_i$, $1 \le i \le k$, and fix it. Let E_n denote the subset of $G_0(\mathbb{R}^n)$ of such chosen g. Note that the set E_n is countable.

The following is a restatement of Lemma 4 of [1] for n > 1.

Lemma 2. Let $n \ge 1$. Let $h_1, \ldots, h_k \in G_0(\mathbb{R}^n) \setminus \{1\}$, and let n_1, \ldots, n_k be a sequence of non-zero integers. When n = 1, assume further that there exists $x_i \in \mathbb{R}$ such that $x_1 < y_1 < \cdots < x_k < y_k$, where $h_i(x_i) = y_i$, $1 \le i \le k$. Then there exists a $g \in G_0(\mathbb{R}^n)$ such that

 $h_k g^{n_k} \cdots h_1 g^{n_1} \neq 1.$

Proof. First, choose points $u_i \in \mathbb{R}^n$, $1 \le i \le k$ such that $h_i(u_i) = v_i \ne u_i$, with $u_1, v_1, \ldots, u_k, v_k$ being pairwise distinct. In case n = 1, choose $u_i = x_i, v_i = y_i$, where x_i, y_i are as in the statement of the lemma. Then one can find neighbourhoods $U_1, V_1, \ldots, U_k, V_k \in \mathscr{B}_n, v_i \in V_i, u_i \in U_i$ such that $\overline{U}_i \cap \overline{U}_j = \overline{V}_i \cap \overline{V}_j = \overline{U}_i \cap \overline{V}_p = \emptyset$ for $1 \le i, j, p \le k, i \ne j \ne p$. In case n = 1 we may assume that $U_1 < V_1 < \cdots < U_k < V_k$.

Now, choose a $V_0 \in \mathscr{B}_n$ whose closure is disjoint from $\bigcup_{1 \le i \le k} (\overline{U}_i \cup \overline{V}_i)$. When n = 1, we can arrange so that $V_0 < U_1$. Now applying Lemma 1 we see that there exists a g in E_n such that $g^{n_i}(V_{i-1}) \subset U_i$, $1 \le i \le k$. A routine verification now shows that $h_k g^{n_k} \cdots h_1 g^{n_1}$ maps V_0 into V_k . It follows that $h_k g^{n_k} \cdots h_1 g^{n_1} \ne 1$. \Box

When n = 1, the hypothesis of the above lemma does not hold for an arbitrary finite sequence of elements $G_0(\mathbb{R})$. Therefore, the above lemma does not imply Lemma 4 of [1]. However, we show below that one can find a copy H of $G_0(\mathbb{R})$ in $G_0(\mathbb{R})$ so that the hypothesis of the above lemma does hold for any finite sequence of elements of H.

Let $J_1 < K_1 < \cdots < J_m < K_m < \cdots$ be a sequence of intervals in \mathbb{R} , J_m , $K_m \in \mathscr{B}_1$ such that no two of them have a common end point, and $\lim J_m = p = \lim K_m$ for some $p \in \mathbb{R}$ (that is $\lim a_m = p = \lim b_m = p$ for any $a_m \in J_m$, $b_m \in K_m$). Choose order preserving homeomorphisms $\phi_m: J_m \to \mathbb{R}$ and order reversing homeomorphisms $\theta_m: K_m \to \mathbb{R}$ for each $m \ge 1$.

Let $m \ge 1$. Given any $h \in G_0(\mathbb{R})$, let $\psi_m(h) \colon \mathbb{R} \to \mathbb{R}$ be the map

$$\psi_m(h)(x) = \begin{cases} \phi_m^{-1} h \phi_m(x) & \text{if } x \in J_m, \\ \theta_m^{-1} h \theta_m(x) & \text{if } x \in K_m, \\ x & \text{if } x \notin (J_m \cup K_m). \end{cases}$$

It is straightforward to verify that each $\psi_m: G_0(\mathbb{R}) \to G_0(\mathbb{R})$ is a monomorphism of groups, and that for any $h \neq 1$, in $G_0(\mathbb{R})$, there exists an $x \in J_m \cup K_m$ such that $\psi_m(h)(x) > x$.

Finally let $\psi: G_0(\mathbb{R}) \to G_0(\mathbb{R})$ be defined as $\psi(h) = \prod_{m \ge 1} \psi_m(h)$. More precisely,

$$\psi(h)(x) = \begin{cases} \psi_m(h)(x) & \text{if } x \in J_m \cup K_m, \\ x & \text{if } x \notin \bigcup_{m \ge 1} (J_m \cup K_m). \end{cases}$$

Then the map ψ is a well-defined monomorphism of groups. Given any sequence $h_1, \ldots, h_k \in G_0(\mathbb{R}) \setminus \{1\}$, we choose $x_j \in J_j \cup K_j$, $1 \le j \le j \le k$ such that $y_j := \psi(h_j)(x_j) = \psi_j(h_j)(x_j) > x_j$, $1 \le j \le k$. Then we have $x_1 < y_1 < \cdots < x_k < y_k$. This proves the following assertion.

Lemma 3. There exists a monomorphism of groups

$$\psi$$
: $G_0(\mathbb{R}) \to G_0(\mathbb{R})$

such that for any $h_1, \ldots, h_k \in G_0(\mathbb{R}) \setminus \{1\}$, the sequence of elements $\psi(h_1), \ldots, \psi(h_k)$ satisfies the hypothesis of Lemma 1. In particular, given any sequence of nonzero integers n_1, \ldots, n_k , there exists a $g \in E_1$ such that

$$\psi(h_k)g^{n_k}\cdots\psi(h_1)g^{n_1}\neq 1.$$

As observed earlier, Lemma 4 of [1] for the case $G_0(\mathbb{R}^n)$, $n \ge 2$, follows from Lemma 1, and in fact, replacing E by E_n , $n \ge 2$, we see that we can avoid the use of Schreier–Ulam metric on $G_0(\mathbb{R}^n)$. In case of $G = G_0(\mathbb{R})$, we need only replace the diagonal copy \mathscr{G} of G in G^{ω} in the proof of Theorem 5 [1] by the image of G under the composite

$$G \xrightarrow{\psi} G \xrightarrow{\Delta} G^{\omega}$$
.

Here again one can take E to be E_1 . Then the rest of the proof of Theorem 5 [1] goes through for this copy of G, showing $G * \mathbb{Z} \simeq \Delta \circ \psi(G) * \mathbb{Z}$ embeds in G.

Addendum: We wish to add the following corollary to Theorem 5 [1].

Theorem 4. Let G denote any one of the following groups: $G_0(\mathbb{R}^n)$, $n \ge 1$; the group of all homeomorphisms of X, where $X = \mathbb{Q}$, \mathbb{N} , the space of irrational numbers, the Cantor set; or the group of all order preserving homeomorphisms of the reals. Let $G_{\lambda} = G$ for $\lambda \in \mathbb{R}$. Then the free product $*_{\lambda \in \mathbb{R}} G_{\lambda}$ embeds in G.

Proof. Let $\{t_{\lambda}\}_{\lambda \in \mathbb{R}}$, denote a set of free generators of a free group F of rank the continuum. By Theorem 5 [1], we know that G * F embeds in G. Now each subgroup $t_{\lambda}^{-1}Gt_{\lambda}$ of G * F is isomorphic to G, and they generate their free product in G * F as λ varies in \mathbb{R} . As G * F embeds in G, this proves the theorem. \Box

References

 P. Sankaran and K. Varadarajan, On certain homeomorphism groups, J. Pure Appl. Math. 92 (1994) 191–197.