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Recently, we noted that the inductive step in the proof of Lemma 4 [l] was 
incomplete in the case G = GO@“), n 2 1. Here we give a different proof of that lemma 
for G,([W”), n > 1. For n = 1, we are able to obtain only a slightly weaker form of the 
lemma. However, this weaker form is all that is needed in the proof of Theorem 5 [l] 
and so the results of our paper remain valid. We shall preserve the notations of our 
paper. Thus G,(K) denotes the group of all homeomorphisms of Iw” with compact 
supports. 

Let n 2 2. The group G = GO@“) has the following property: given any sequence of 
pairwise distinct points x1, . . . , xk, y,, . . . , yk, k any positive integer, there exists a g E G 
such that g(Xi) = yi, for 1 I i I k. This property fails for GO@). However, if 
xi < y, ... < xk < yk in [w, then there exists a g E G,(R) such that g(Xi) = yi, 1 < i I k. 
In fact, one could find a g E G,(R) such that g is piecewise linear in [w having support in 
any prescribed interval (x, y), where x -C x1 < yk < y. 

For n 2 1, let B” denote the collection of all open sets in [w” of the form J1 x ... x J,, 
where each Ji is a nonempty bounded interval in [w with rational end points. For 
U,V~~iwewriteU<VtomeanUnT/=O,andx<yifx~Uandy~V. 

Lemma 1. Let n 2 1, k 2 1. Let U1, VI, . . . , U,, vk eBn be such that uin uj = 
UinV, = Vin Vj = 8 for 1 I i, j, p < k, i #j # p. When n = 1, assume also that 
u1 < VI < ..’ < Uk < Vk. Then, given any sequence of nonzero integers nl,. . . , nk, 
there exists u gEGo(R”) such that g”~(Ui) c Vi for 1 2 i < k. 

Proof. This is easy for k = 1. In fact, one can find an element gi in Go@“) with support 
contained in an open set Wi, 1 I i < k such that gF(Ui) c Vi and E’inwj = 8, for 
i # j. Then it is straightforward to verify that g = gl, . . . , gk E G,,(P), and g”‘(Ui) c Vi, 
l<i<k. 0 
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For each k 2 1, and each sequence of open sets Ui, V,, . . . , U,, I’, E G,(R”), satisfy- 
ing the hypothesis of Lemma 1, and each sequence of nonzero integers ni, . . . ,nk, 
choose a gEGo(R”) such that @(Vi) c Vi, 1 I i I k, and fix it. Let E, denote the 
subset of G,(R”) of such chosen g. Note that the set E, is countable. 

The following is a restatement of Lemma 4 of [l] for n > 1. 

Lemma 2. Let n 2 1. Let h 1, . . . , hk E GO(R’)\{ l}, and let nl, . . . , nk be a sequence of 
non- zero integers. When n = 1, assume further that~there exists xiE R such that x1 < 
Yl < ... < xk < Yk, where hi(xi) = yi, 1 I i I k. Then there exists a gEGo([W”) such 
that 

hkg”k . . . hlgnl # 1. 

Proof. First, choose points Ui E R”, 1 I i I k such that hi(ui) = Ui # ui, with 
Ul, 01, *.. , uk,vk being pairwise distinct. In case n = 1, choose Ui = Xi, Vi = yi, where 
Xi, yi are as in the statement of the lemma. Then one can find neighbourhoods 
U1, T/1, . . . . Uk, vk E SSn, Vi E Vi, Ui E Vi such that UifJUj = VinVj = uinv, = 0 for 
lIi,j,p~k,i#j#p.Incasen=lwemayassumethatU,<V,< ... <Uk<Vk. 

NOW, choose a V, E &?!n whose closure is disjoint from u1 c is k(aiu Vi). When n = 1, 
we can arrange so that V, < U1. Now applying Lemma 1 we see that there exists a g in 
E, such that g”r(I’i_i) c Uiy 1 I i I k. A routine verification now shows that 
hkg*” ... hlgnl maps I’, into vk. It folIows that hkgn” ... hlgnl # 1. 0 

When n = 1, the hypothesis of the above lemma does not hold for an arbitrary finite 
sequence of elements G,(R). Therefore, the above lemma does not imply Lemma 4 of 
[l]. However, we show below that one can find a copy H of G,(R) in G,(R) so that the 
hypothesis of the above lemma does hold for any finite sequence of elements of H. 

Let J1 < K1 < .. < J,,, < K, < ... be a sequence of intervals in R, J,,,, K, E Bl 
such that no two of them have a common end point, and lim J,,, = p = lim K, for some 
p E R (that is lima, = p = limb, = p for any a, E J,, b, E K,). Choose order 
preserving homeomorphisms & : J,,, + I&! and order reversing homeomorphisms 
&:K,-+Rforeachm21. 

Let m 2 1. Given any he G,(R), let $,(h): R! -+ R be the map 

& ’ h&,(x) if x E J,,,, 

$m(h)(x) = 0; ‘h&,(x) 

i 

if x EK,, 

X if x $(J,,,uK~). 

It is straightforward to verify that each $,,,: Go(R) + G,(R) is a monomorphism of 
groups, and that for any h # 1, in G,(R), there exists an x E J,,,uK, such that 
&(h)(x) ’ x. 

Finally let II/ : G,(R) + Go(R) be defined as $(h) = nm 2I $m(h). More precisely, 
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Then the map $ is a well-defined monomorphism of groups. Given any sequence 
hi, . . . Jik~Go(~)\{l}, we choose XjE: JjUKj, 1 I j I j < k such that yj := $(hj)(xj) = 
$j(hj)(xj) > Xj, 1 I j I k. Then we have ~1 < y, < ... < xk < y,. This proves the 
following assertion. 

Lemma 3. There exists a monomorphism of groups 

$1 GdW + G&W 

such that for any ht, . . . , hk E G,(R)\{ l}, the sequence of elements $(h,), . . . , IC/(hk) 
satisfies the hypothesis of Lemma 1. In particular, given any sequence of nonzero integers 
n,, . . . , nk, there exists a g E El such that 

$(h,)g”l ... rl/(h,)g”’ z 1. 

As observed earlier, Lemma 4 of [l] for the case G,(R”), n 2 2, follows from 
Lemma 1, and in fact, replacing E by E,, n 2 2, we see that we can avoid the use of 
Schreier-Ulam metric on Go(R”). In case of G = G,(R), we need only replace the 
diagonal copy 3 of G in G” in the proof of Theorem 5 [l] by the image of G under the 
composite 

Here again one can take E to be E 1. Then the rest of the proof of Theorem 5 [l] goes 
through for this copy of G, showing G * Z N A 0 $(G) * Z embeds in G. 

Addendum: We wish to add the following corollary to Theorem 5 [l]. 

Theorem 4. Let G denote any one of thefollowing groups: Go(W), n 2 1; the group of all 
homeomorphisms of X, where X = Q, N, the space of irrational numbers, the Cantor set; 
or the group of all order preserving homeomorphisms of the reals. Let GA = G for il E R. 
Then the free product *l.w Gn embeds in G. 

Proof. Let {tl}l, R, denote a set of free generators of a free group F of rank the 
continuum. By Theorem 5 [ 11, we know that G * F embeds in G. Now each subgroup 
t; ’ Gt, of G * F is isomorphic to G, and they generate their free product in G * F as 
A varies in R. As G * F embeds in G, this proves the theorem. 0 
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